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ABS TRACT

The possibility of designing constrained adaptive finite

impulse response digital filters is investigated as motivated

by a study of adaptive noise cancellation. The first con-

straint considered consists of a fixed angle between filter

zeros and is implemented in a master-slave approach in which

one of the zeros is adjusted adaptively and the others follow

subject to the constraint. The second constraint considered

is a linear constraint on the filter weights and is imple-

mented by augmenting the error equation with Lagrang an

multipliers. Simulations indicate that the approach is

feasible.
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I. INTRODUCTION

This thesis investigates the possibility of designing

constrained adaptive finite impulse response (FIR) filters.

FIR adaptive filters self-adjust their parameters to match

the output signal to a desired signal in an optimal least

squares sense. Considered in detail is the possibility of

designing the adaptive process so that either the parameters

(weights) of the filter are constrained by an algebraic for-

mula or, alternatively, are constrained so that the zero

pattern of the FIR transfer function is fixed while the

actual positions of the zeros are adaptively adjusted. An

application which motivated this study is adaptive noise

cancellation where noise rejection over a given bandwidth

with a specified frequency rejection spectrum is required,

but the center frequency of the rejection band is unknown and

needs to be determined adaptively.

The usual method of extracting a signal from a strong

noise background is to pass it through a filter which tends

to suppress the noise while leaving the signal relatively

unchanged. Filters designed for this purpose can be either

fixed or adaptive. The design of fixed filters is based on

some prior knowledge of both the signal and noise character-

istics. Adaptive filters have the distinct advantage of

being able to adjust themselves automatically and their

implementation requires little a priori knowledge of the
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signal and noise characteristics. This type of adaptive

filtering often converges to the optimal filter, which

originated with the pioneering work of Wiener [Ref. 11 and

later was enhanced by Kalman [Ref. 21 and others. The

optimal Wiener filter is defined as the linear filter opti-

mized with respect to a minimum mean squared error, where the

error is the difference between the filter output and the

desired filter output.

Widrow [Ref. 3] presents the classic FIR adaptive filter

which is optimized via a gradient minimum seeking algorithm

called the Least Mean Squared (LMS) algorithm. This chapter

discusses the theory behind both the Wiener and LMS filters,

and demonstrates that, for statistically stationary input

signals, the steady-state values of the LMS adaptive filter

weights are accurate approximations of the Wiener weights.

The following matrix, vector, and scalar definitions are

used in this thesis. An underlined capital letter denotes a

matrix (M). A lower case underlined letter denotes a vector

(v). A lower case letter which is not underlined denotes a

scalar (s). Finally, a capital letter which is not under-

lined denotes an internal element of the corresponding matrix

M(n) .

In Chapter II the concept of adaptive noise cancelling is

studied in detail. In Chapter III the constrained adaptive

FIR filter is presented and in Chapter IV some simulation

results are given.
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A literature search has indicated that very little re-

search has been done in the area of constrained adaptive

filters. Frost [Ref. 8] presents a constrained LMS algorithm

which is capable of adjusting an array of sensors in real

time to respond to a signal coming from a desired direction

while discriminating against noises coming from other direc-

tions. A set of linear constraints on the weights maintains

a chosen frequency characteristic for the array in the

direction of interest.

A. THE ADAPTIVE LMS AND THE OPTIMAL WIENER FILTERS

The LMS adaptive filter shown in Figure 1.1 uses the

weighted sum of a set of input signals which are combined to

form an output signal y(n). The input signal vector is

defined as

X(n) = [X (n) X2 (n) ... X(n ) ]T
(1 .1)

= [X(n) X(n-1) ... X(n-N)]T

The weighting coefficients

W = [wI  w2  . WNT (1.2)

are the weights of the system. Each input value is multi-

plied by a corresponding weight coefficient and the linear

combination of the sum of these weighted inputs forms the

output

9
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N N
y(n) [ WiX. (n) = [ W X(n-i) (1.3)

i=l

which can be written in matrix form as

y(n) = X(n)T W = W TX(n) (1.4)

An error signal is now defined as the difference between

a desired response d(n) and the actual response y(n).

e(n) = d(n) - y(n) = d(n) - W TX(n) (1.5)

The purpose of the adaptive algorithm is to adjust the

weights of the filter to minimize the mean-square error. A

general expression for mean-square error as a function of the

weight values, assuming that the input signals and the de-

sired response are statistically stationary, can be derived

in the following manner. Squaring the error results in

e (n) = d(n)2 - 2d(n)X(n)Tw +WTx (n)X(n)T W (1.6)

Taking the expected value of both sides yields

E[(n)2] = E[d(n) 2 2E[d(n)X(n)T 1W

+ WTE[X(n)X(n)T] (1.7)

If the vector Exd is now defined as the cross correlation

between the desired response (a scalar value) and the input

vector, the result is

11



r E(d (n) X(n)] E Ed (n) X(n) d (n) X(n-1) ... d (n) X(n-N)] 18

The input correlation matrix R Kxis defined as

XlE[X)X)X~n) XlnX(nEIn)N

1.9

R.)~ni ... X)n)X)n-NE

X(n) X(n) X(n) 2 ()... XN(n) XN(n-)

(1.1)

Equtio (110 is)~n1 usull wrte as:X(nN

X 1 (0-) X. Rn (N-i).. n-)X nN

R = (1.10)

R X(N) R X(N) R.. R (0)
Rxx~l xx(O . xx(N1

Now the mean squared error (1.7) can be expressed as

12



E[E(n) 2 ] = E(d(n) ] - 2r xd W + W TR W (1.12)-xd - -xx-(.2

Since the error is a quadratic function of the weights

and Rx. is a positive definite matrix then the surface of the

error has a guaranteed global minimum. Gradient methods

adjust the weights to minimize the error by descending along

this surface with the objective of finding the bottom.

The gradient V of the quadratic error function is obtained

by differentiating Equation (1.12) with respect to the weight

vector w.

= 3 E[(n) 2] aE[e(n) 2 .E[e(n) 2 T
=w 1 (1.13)

V = -2rxd + 2RxW (1.14)

This optimal weight vector w is called the Wiener weight

vector [Ref. 1] and is found by setting the gradient of the

mean square error function to zero.

W*= r (1.15)
- -xx -xd

This equation is a matrix version of the Wiener-Hopf

equation. The practical objective of the adaptive system is

to find a solution to (1.15). An exact solution would require

a priori knowledge of the correlation matrices rxd and R x .

However, this information is usually not available. Addi-

tionally, when the number of weights is large a direct

13



solution is computationally cumbersome since it requires an

N by N matrix inversion in addition to the N(n+l)/2 auto-

correlation and cross correlation measurements.

B. AN EXAMPLE OF THE WIENER SOLUTION

As an example to illustrate the calculations involved

for a simple four weight Wiener solution consider the

following example using deterministic signals. The input

signal is the sampled sum of two sinusoids of different

frequencies and is given by

X(nT) = sin( 1 inT) + sin(w 2nT) (1.16)

The desired value is the sampled desired or reference

signal.

d(nT) = K sin(w 2nT) (1.17)

In order to calculate the autocorrelation matrix, Rxx, note

that

Xl(n) = X(n) sin(winT) + sin(w2nT)

X2(n) = X(n-l) = sin(wl(n-l)T) + sin (, 2 n-l)T)

(1.18)

X3(n) = X(n-2) = sin'w 1 (n-2)T) + sin(w 2 (n-2)T)

X4(n) = X(n-3) = sin(w1 (n-3)T) + sin(w2 (n-3)T)

14



The following expected value computations are taken over a

full number of cycles, P, for both sinusoids.

E[Xl(n)Xl(n)) = E[Xl(n) 2 ] = Xl(n) 2

1 1

Likewise all the diagonal terms will take on the value of

2 22
X2(n) = X3(n) = X4(n) = 1

Consider now the off diagonal terms of R

E[Xl(n)X2(n)] = Xl(n)X2 (n)

P
I n (sin w1 nT+sin w2 nT) (sinw1 (n-l) T + sinw2 (n-l)T)n=0

Carrying out the indicated multiplication yields

P
E[Xl(n)X2(n)] = I (sinw1 nT) (sinw1 (n-l)T)

n=0

P
+ I (sinw2 nT) (sinw2 (n-l)T)

n=0

P
+ [ (sinw1 nT) (sin 2 (n-l)T)

n=0

P
+ I (sinw2 nT) (sinw,1 (n-l) T)

n=0

15



The final two terms of this expression are zero leaving

P
E[Xl(n)X2(n)] I (sinw 1 nsnw1n )nw 2 nsiw 2nT-w 2T))

Using the identity (sinA) (sinB) = !-fcos(A-B)-cos(A+B)] the

final expression becomes

E(Xl(n)X2(n)] = coswlT + 2Lcosw2 T (1.19)

Similarly,

EIIXl(n)X3(fl)] = -cos2wT + L os2w T (1.20)
2 1 2 2

E[Xl(n)X4(l)] = 2 cos3wT + Lcos3w T (1.21)

Denoting

E [X1 (n) X2 (n)I a

E[Xl(n)X3(n)] = b (1.22)

E[X1 (nl)X4 (nl) = c

the autocorrelation matrix can be expressed as

1 a b c

a 1 a b
R - (1.23)

-~x b a 1 a

c b a 1

16



For the cross correlation matrix ryd

rxd = E(d(n)Xl(n) d(n)X2(n) d(n)X3(n) d(n)X4(n)] T  (1.24)

These terms compute as

E[d(n)Xl(n)] = K(sinw 1,nT +sinw 2nT)sinw 1 nT

P
= K sinw1 nT(sinw InT +sinw 2nT)

n=O

P 2 P
= K Z sin w1nT + K Z (sinf1nT)sinw2nT

n=O n= 1

The final term sums to zero leaving

P 2 KE[d(n)Xl(n)] = K Z sin w 1nT = (1.25)
n=O

Similarly,

E[d(n)X2(n) ] = K(sinwl(n-)T +sinw2 (n-l)T)sininT

P= K I sinw 1nT (sin 1 (n-i) T)
n=0

P+ K ssininT(sin 2 (n-l)T)

n=0

The final term sums to zero leaving

17



E~d(n)X2(n)) K[I~ sin 1 nT - siflw lTsiflw T]
n=O n=O

Using the (sinA) (sinB) trigonometric identity invoked for

(1.19) and realizing that the final term sums to zero, the

expected value finally becomes

E~d(n)x2(n)I = E cosw, T (1.26)
2 1

Likewise,

E[d(n)X3(l)] = K- con2w T (1.27)

and

Et[d(n) X4 (n) I = ~cosA~T (1.28)

The Wiener solution for w* as given by (1.15) is

1 a b c 1 11

W*a 1 a b cosw 1T K (.9
= b a 1 a cos2w 1T 2 (.9

c b a 1 cos3w IT

where the values of a, b and c are given by (1.22). The

Wiener vector is calculated for the specific values of

K= 1

fl 10 Hz

18



f2 =35 Hz

T = 1/256

For these specific values

a = .8116

b = .3676

c = -.052

K
-EcosT] = .485

Y[cos"T] = .441

[cos4T] = .3705

and the optimal Wiener vector w* is

w 3.0614

w* -5.5772
2

w* (1.31)
w * 5.1228
3

Lw* -1.5780

C. THE LMS ADAPTIVE FIR FILTER

The values for the correlation matrices are not generally

known a priori. The LMS adaptive algorithm introduced by

Widrow and Hoff [Ref. 1] is a practical method for finding

close approximate solutions to (1.15) in real time. The

algorithm does not require measurements of correlation

functions, nor does it require matrix inversion. The LMS

algorithm is an implementation of the method of steepest

19



descent. According to this method, the "next" weight w(n+l)

is equal to the present weight w(n) plus a change proportional

to the negative gradient. Thus

w(n+l) = w(n) - pV(n)

The parameter p controls stability and also the rate of

convergence. An estimate of the instantaneous gradient V(n)

is obtained by assuming that the square of a single error

sample c(n) is an estimate of the mean square error. Differ-

entiating e(n) with respect to w results in

n) 2n (n2 a (n)2 a (n) 2 T
V(n) = 2 w 2  ; w (1.32)

i(n) = 2 e(n)[ [e(n) aE(n) .. e(n)]T (1.33)
wI  w 2  w N

The expression for the gradient estimate can be approximated

by

V(n) = - 2E(n) X (n) (1.34)

Using this estimate in place of the true gradient yields the

Widrow-Hoff LMS algorithm given by

w(n+l) - w(n) + 2pe(n)X(n) (1.35)

The algorithm is generally easy to implement and al-

though it makes use of gradients of the mean square error

20



function, it does not require squaring, averaging or

differentiation.

To show the convergence of the Widrow-Hoff LMS algorithm

(1.35) to the Wiener solution given by (1.15) write

w(n+1) = w(n) + 2uE(n)X(n)

as

Tw(n+l) w(n) + 2PX(n) [d(n) -X(n) w(n)]

w(n+l) [I -2uX(n)X(n) ]w(n) + 24X(n)d(n)

Consider now the ensemble average. That is,

E(w(n+l)] = (I -21R xx]E[w(n)I + 2 jrxd (1.36)

With an initial weight vector w(O), j+1 iterations of

Equation (1.36) becomes

j+l

E(w(j+l)] = [I-21R XxI w(O) +2u [I-2iR xx ix d  (1.37)-x i-0 xx -

This equation may be put in diagonal form by using the normal

form expansion of the matrix %xx; that is

R XX Q- 1 AQ

21



where A is the diagonal matrix of eigenvalues, and the square

matrix of eigenvectors is the matrix Q. Equation (1.37)

can now be written as

[[w(j+l)I = [I-2Q-'AQ]J+Iw(0) + 2
1i [I-21Q-IAQ]ird
i= 0 I

= Q-i [I-2uA]J+'w(0) +2u i [I2ijQ-AQ]'rd (1.39)
i=0

As long as the terms of the diagonal matrix [I-2PA] are all

of magnitude less than unity, then the first term of (1.39)

goes to zero as the number of iterations increases. That is,

lim[I-2uA] j+l 0 (1.40)
j -

Writing (1.40) as a geometric series results in

lir [I-2uA] i A (1.41)j i=G 2 U (.1

or for the specific component 'p' of the matrix

lir [I-2IA]i _
j-.0 i=0 p

Therefore, in the limit, Equation (1.39) becomes

limE[w(j+l)] = AQrXd = R- 1 (1.42)ir - -xx -xd

22



which is the same as the Wiener solution shown in Equation

(1.15).

Convergence of the mean of the weight vector to the

Wiener solution is insured if and only if the proportionality

constant p is set within certain bounds. Since the diagonal

terms of (I-2vA] must all have magnitude less than unity,

and since all eigenvalues in A are positive, the bounds on p

are given by

jl -2wXax < 1

or

0 < < 1/X max (1.43)

where Xmax is the maximum eigenvalue of Rxx

23



II. ADAPTIVE NOISE CANCELLING AND ITS APPLICATIONS

In this chapter the concept of adaptive noise cancella-

tion is considered. Adaptive noise cancelling is one of the

most practical applications of adaptive signal processing

[Refs. 4,5,6,7]. The basic principle involved is the use of

a reference input derived from one or more sensors located

at points in the noise field where the signal is either unde-

tectable or weak. The reference input is adaptively filtered

and subtracted from the primary input containing both signal

and noise to generate an error signal which controls the

adaptive process. The result is the attenuation or elimina-

tion of the primary noise by cancellation. In circumstances

where adaptive noise cancelling is applicable levels of noise

rejection are often attainable that would be difficult or

impossible to achieve through direct filtering. Because the

concepts of adaptive noise cancelling and their applications

are fundamental to constrained adaptive filtering developed

in Chapter III, they are presented here in detail. For exam-

ple, if the angle between zeros and the magnitude of the zeros

are maintained constant during an adaptive process, the fre-

quency response characteristics remains invariant. Specific

examples are discussed and the resulting equations indicate

the design limitations of these approaches.

A. THE BASIC SYSTEM

Figure 2.1 depicts the basic adaptive noise cancelling

system concept . A signal [s] is transmitted over a channel

24
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Fig. 2.1. The Adaptive Noise Cancelling Concept
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to a sensor that picks up a noise [nO] which us uncorrelated

with the signal. The combined signal and noise [s+nO] form

the primary input to the canceller. A second sensor re-

ceives a noise [nl] which is also uncorrelated with the

signal but which is correlated in some unknown manner with

the noise [nO]. This sensor input provides the reference

input to the canceller. The noise [nl] is filtered to pro-

duce an output [y] that is as close a replica as possible

to [nO]. This output is subtracted from the primary input

[s+nO] to produce the system output [z = s +nO -y].

If it were possible to know the characteristics of the

channels over which the noise was transmitted to the primary

and reference sensors, then it would theoretically be possi-

ble to design a fixed filter capable of changing [nl] into

[nO]. The filter output could then be merely subtracted from

the primary input to produce the signal alone. However, the

characteristics of the transmission paths are generally un-

known or known only approximately and are seldom of a fixed

nature, therefore precluding the use of a fixed filter.

In the system shown in Figure 2.1 the reference input is

processed by an adaptive filter. Self-adjustment of the

filter's impulse response is accomplished by the LMS algorithm

described in Chapter I. The error signal used in the adaptive

process depends on the nature of the application. With noise

cancelling systems the practical objective is to produce a

system output [z = s +nO -y] that is a best fit in the least

squares sense to the signal (s].

26



Consider the system inputs shown in Figure 2.1 and the

filter output (y]. Assume that [s] is uncorrelated with (nO]

and [nil and that [nO] and (n1] are correlated. The output

[zi is

z = s + no - y (2.1)

Squaring produces

z 2= s2 + (nO-y) 2 + 2s(nO-y) (2.2)

Now, taking the expectation of both sides and using the fact

that (s] is uncorrelated with [nO] and [y] produces

E[z 2 ] = E[s 2 + Et(nO-y) 2 + 2E[s(nO-y)]

= E[s 2 ] + E[(nO-y)21 (2.3)

The minimum output power is

2 2 2Min Etz 2 ] = E[s 2 + Min E[(nO-y) 1 (2.4)

The signal power is unaffected as the filter is adjusted to

minimize E[z 2. When the filter is adjusted so that E[z 2

is minimized, E[(nO-y) 2 is therefore also minimized. The

filter output [y] is then a best least squares estimate of the

primary noise tnO]. It is also of interest to note that

when E[(nO-y) 2 ] is minimized, EI(z-s) 2  is also minimized,

since from (2.1)

27



(z-s) = (nO-y) (2.5)

Adapting the filter to minimize the total output power causes

the output [z] to be a best least squares estimate of the

signal [s] for the given reference input. The output [z]

will contain the signal [s] plus noise. From (2.1) the output

noise is given by (nO-y). Since minimizing E[z 2 ] minimizes

E[(nO-y) 2, minimizing the total output power minimizes the

output noise power. Because the output signal remains con-

stant, minimizing the total output power maximizes the signal-

to-noise ratio. From (2.3) it can be seen that the smallest

possible output power E[z 2 ] = E[s 2 ] is achieved when

2E[(nO-y) 2 ] = 0 and therefore y = nO and z = s. In this case,

minimizing output power causes the output signal to be per-

fectly noise free. These same arguments can be extended to

the case where the primary and reference inputs contain, in

addition to InO] and [nl], additive random noises uncorre-

lated with each other and with [s], [nO] and [nli. They can

also be extended to the case where [n0] and [nl] are deter-

ministic rather than stochastic.

B. SIGNAL-TO-NOISE RATIO IN THE ADAPTIVE FILTER

At this point it is of value to show analytically the

increase in signal-to-noise ratio of the noise cancelling

technique.

As noted previously, fixed filters are generally inappro-

priate for noise cancelling situations because the correlation
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and c_-nss correlation functions are usually unknown and

additionally they often vary with time. Adaptive filters

"learn" the~a statistics initially and then track them through

slow variations. For stationary stochastic inputs, however,

the steady-state performance of adaptive filters closely

approximates that of fixed Wiener filters and therefore Wiener

filter theory provides a useful mathematical tool in care-

fully analyzing statistical noise cancelling problems.

Figure 2.2 shows the classic single-input/single-output

Wiener filter. The input signal is x(j), the output signal

is y(j) and the desired response is d(j). The input and

output signals are assumed to be discrete in time, and the

input signal and desired response are assumed to be statis-

tically stationary. The error signal is e(j) = d(j) - y(j).

The filter is linear, discrete and designed to be optimal

in the minimum mean-square-error sense. it is considered

to be composed of an infinitely long, two sided tapped delay

line.

As shown in Chapter I (1.15) the optimal Wiener weight

solution can be written

w*(k = x1(~ (k) (2.6)

or

W*(I)R (k-9) = rxd (k) (2.7)
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Fig. 2.2. The Wiener Filter

30



To obtain the transfer function of the Wiener filter

consider first the power spectral density of the process.

The application of the z-transform to R M(k) yields

S(z) z__ (k)] = R (klz-k
xx xx ~~k= IC ,()z 28

Likewise, the cross power spectrum between the input signal

and desired response is

Sxd(z) z [rd (k)] I rxd (k)z- k  (2.9)
-xd k=-w -

The transfer function of the Wiener filter is

w*(z) Z w*(k) z - k (2.10)
k-w

For specific values of an individual matrix the optimal

Wiener transfer function can be written as

w*(z) S xd (Z)(2.11)S (z)xx

Consider now a single channel adaptive noise canceller

with a typical set of inputs shown in Figure 2.3. The pri-

mary input consists of a signal s(j) plus the sum of two

noises mO(j) and n(j). The reference input consists of a

sum of two other noises ml(j) and n(j) * h(j), where h(j) is

the impule response of the reference channel whose transfer

function is H(z). To simplify the notation the transfer
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function of the noise path from n(j) to the primary input

has been set at unity. This procedure does not restrict the

analysis since a suitable choice of H(z) and of statistics

for n(j) will allow any combination of mutually correlated

noises to appear at the primary and reference inputs. The

noises mO(j) and ml(j) are uncorrelated with each other, with

s(j) and with n(j) and n(j) * h(j). The noises n(j) and

n(j) * h(j) have a common origin and are correlated with each

other but uncorrelated with s(j).

The noise canceller includes an adaptive filter whose

reference input x(j) is ml(j) + n(j) * h(j) and whose desired

response d(j) is the primary input to the noise canceller and

is composed of s(j) + mO(j) + n(j). The error signal e(j)

is the noise canceller's output. When the adaptive process

has converged then the optimal unconstrained transfer function

of the adaptive filter is given by (2.11), which can be further

reduced as follows. The spectrum of the noise ml is

Smimi(Z) and that of the noise n arriving via H(z) is

S nn(z) IH(z)12. Therefore, the input spectrum to the filter

is

Sxx(Z) = Smlml(Z) + Snn (z)IH(z) 12 (2.12)

The cross power spectrum between the filter's input and

the desired response depends only on the mutually correlated

primary and reference inputs and is given by
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Sxd (z) = Snn (z) H (z-) (2.13)

Substituting Equations (2.12) and (2.13) into (2.11) results

in the Wiener transfer function and is given by

Sn(Z)H(z-1

w*(z) = (2.14)Smm (Z) + S (z) IH(z)}2
mlml nn

The result is a transfer function which is independent of

the primary signal spectrum S ss(z) and of the primary uncorre-

lated noise spectrum Sm0m0 (z).

An interesting special case which clearly brings out the

function of the adaptive noise canceller is when the additive

noise ml in the reference input is zero. Then Smlml(z) is

zero and the optimal transfer function becomes

w*(z) = I/H(z) (2.15)

That is, the adaptive noise canceller causes the n(j) noise

to be perfectly nulled at the noise canceller output. The

primary uncorrelated noise mO(j) remains uncancelled.

Consider an analysis of the performance of the adaptive

noise canceller in terms of the ratio of the signal power

density at the output, pout(z), to the noise power density at

the primary input ppri (z). This ratio can be written as

Snnz S (z) +Sm (z) primary noise

Pout (Z) +Snnm0(Z) = pwr spectrum
Opri(z) = output noise(Z) output noise (2.16)

pwr spectrum
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with the signal power spectrum factored and cancelled out of

the numerator. Figure 2.3 shows that the output noise

spectrum consists of the sum of three components--one due to

the propagation of mO(j) directly to the output, another due

to the propagation of ml(j) to the output via the transfer

function W(z), and another due to the propagation of n(j)

to the output via the transfer function 1 -H(z)W(z). The

output noise power spectrum can then be written as

Soutput noise(z) = SmOma(Z) +Smlml(Z) w*(z) 2

+ S nn(z)1 -H(z)W*(z) 2 (2.17)

Now, if the ratios of the spectra of the uncorrelated noises

to the spectra of the correlated noises (noise-to-noise den-

sity ratios) at the primary and reference inputs are defined

as

s (z)
A(z) = M (Z) (2.18)

nn

BW (z = llz 7 (2.19)
S nn (z)IH(z)1 2

then the transfer function of (2.14) can be written as

W*(z) = /[H (z) (B (z)+l)] (2.20)

and the output noise power spectrum (2.17) can be written

as
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Smlml ( z)
S (Z) = S (Z) + 2 (

pt noise mOmO IH(z) 2 (B(z)+l)

1 2
+S nn(ZW 1i - B-(z)+lj

B(z)

S (Z)A(z) + Sn (Z) B(z) (2.21)nin nnl B(z)+l

and the ratio of the output to the primary input noise power

spectra given in (2.16) is

Pout (Z) Snn(Z) [2. + A(z)]

Ppri(Z) Soutput noise(Z)

[1 + A(z)]
A(z) + (B(z))/(B(z)+l)

-A(z) + 1](B(z) + i] (2.22)
A(z) + A(z)B(z) + B(z)

This expression allows an estimation of the level of noise

reduction to be expected with an ideal noise cancelling sys-

tem. In such a system the signal propagates to the output

with a transfer function of unity. From (2.22) it can be

seen that the ability of a noise cancelling system to reduce

noise is limited by the uncorrelated-to-correlated noise den-

sity ratios at the primary and reference inputs. The smaller

in magnitude are A(z) and B(z), the greater will be

Pout(z)/Ppri (z) and the more effective the action of the

canceller. The desirability of low levels of uncorrelated

noise in both inputs is made even more evident
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by considering the approximations

Po ut(z) I + B(Z)
1) small A(z) = I + B(z) (2.23)Pp i(z) 1 +(z)

2) small B(z) Pout 1 + A(z) (2.24)Ppri zA()(.4

Pout(z) 1
3) small A(z) -(z) A(z) + B(z) (2.25)

and B(z) pri

Infinite improvement is implied by these relationships

when both A(z) and B(z) are zero resulting in complete re-

moval of noise at the system output and perfect signal repro-

duction. When both A(z) and B(z) are small other factors

such as misadjustment caused by gradient estimation noise in

the adaptive process and the finite length of the adaptive

filter limit system performance. These factors are discussed

at some length in [Ref. 31.

C. SIGNAL PROPAGATION IN THE REFERENCE INPUT

If it is reasonable to consider reference noise propaga-

tion into the primary signal input it is also reasonable to

consider certain instances when the signal propagates to the

reference input. The system depicting the adaptive noise

canceller with signal components in the reference input is

shown in Figure 2.4. The derivation which discusses how much

of the signal is cancelled when a portion of the signal input
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"leaks" into the reference input omits the additive uncorre-

lated noises mO(j) and ml(j) in order to simplify the

analysis.

Given that the spectrum of the signal is Sss (z) and

that of the noise is S (z), then the spectrum of thenn

reference input is given by

Sx (Z) = S (z)II(z) 2 + S (z)IH(z)12 (2.26)

The cross spectrum between the reference and primary inputs

is

Sxd (Z) = Ss (Z)I(z-) + Snn (z)H(z-) (2.27)

When the adaptive process has converged, the Wiener trans-

fer function of the adaptive filter given by (2.11) is

Sss (z)I(z-l) + Snn (z)H(z -I )
W* (z) = 2(2.28)

Sss (z) I(z) 2 + S nn(z)iH(z) 2

The transfer function of the propagation path from the

signal input to the noise canceller output is l-I(z)W*(z)

and that of the path from the noise input to the canceller

output is l-H(z)W*(z). The spectrum of the signal component

in the output is thus

Sss out = Sss(Z) I I (Z)W* (Z)

( IH(z)-I(z)IS nn(z)H(z- )
= Ss (z) 2(2.29)

S (z)(I(z)j2 +Sn (z)IH(z) 12
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and likewise, that of the noise is

Snn out (z) = Snn(Z) Ii - U(z)W*(z) 2

[I(z)-H(z)IS (z)I(z - ) 2= Sn (Z) ss)1 (2.30)
n i (z) S5 5 (z) (z nn(z) (H(z))2  (

The output signal-to-noise density ratio is therefore

S s(z) Snn (Z) H(z - I) 2

out = nn ( z ) s (z) I(z- I )
Sss

Snn(Z) 2 
(2.31)

Sss (Z) I I(z) 1

The output signal-to-noise density ratio can be conveniently

expressed in terms of the signal-to-noise density ratio at

the reference input in the following manner. The spectrum

of the signal component in the reference input is

Sss ref = ss (z)II(z)12  (2.32)

and that of the noise component is likewise

Snn ref (z) = S nn(Z) IH(z) 12 (2.33)

Therefore, the signal-to-noise density ratio at the reference

input is thus
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Sss (z) 1z(z) 12
Pref = , 2 (2.34)Snn(z) IH(z) I

Comparison of Equation (2.34) with (2.31) shows that

gout (z) = i/Pref (Z) (2.35)

This shows that if the noises in the primary and reference

inputs are mutually correlated, the signal-to-noise density

ratio at the noise canceller output is simply the reciprocal

at all frequencies of the signal-to-noise ratio at the reference

input. That is, in order to obtain a good signal-to-noise

density ratio at the filter output there should be very little

signal at the reference input.

The final objective of the analysis is to derive an

expression for the spectrum of the output noise. As with the

previous analysis it is instructive to first write the trans-

fer function for the path from which the noise n(j) propagates

to the output.

S (z)I(z-l )+Snn (z)H(z- ) 2

ss nn
1 -H(z)W*(z) = 1l-H(z) 2

Sss (Z) (1(Z)12+Snn(Z)H(z) 2

S (z)I(z - l )[I(z)-H(z)]
- 2S (2.36)

Sss (z) I(z)12+S nn(z)H(z)J 2

When I(z) is small (2.36) reduces to
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-s (z)Iz(z - 1

1 - H(z)W*(z) -1 (2.37)
n (z)H(z

The output noise spectrum is

2
Soutput noise = S nn(z)1l - H(z)W*(z)l (2.38)

Again, considering the case where I(z) is small results in

S output noise(z) S (z) -1) (2.39)
S nn (z)H(z

- I )

If Equation (2.39) is written in terms of the signal-to-noise

density ratios at the reference and primary inputs, where

the signal-to-noise density ratio at the reference input is

given by Equation (2.34) and

S (z)
p (z) __ W (2.40)
pri Snn(Z)

then Equation (2.39) can be written as

SS (z)P (Z IP W .z) (2.41)
Soutput noise nn ref pri(

Equation (2.41) shows that the output noise spectrum

acts according to three factors (given that I(z) is small).

First, the output noise spectrum depends on the input noise

spectrum. Second, if the signal-to-noise density ratio at

the reference input is low, the output noise will be low;
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that is, the smaller the signal component feeding into the

reference input, the better the cancellation of the noise.

This is to be expected and was already shown by Equation

(2.35). The third factor implies that if the signal-to-noise

density ratio in the primary input (the desired response of

the adaptive filter) is low, the filter will be trained most

effectively to cancel the noise rather than the signal and

therefore the output noise will be low.

As an illustration of the level of performance attainable

in practical situations consider the following example. An

adaptive noise cancelling system is designed to pass a

plane-wave signal received in the main beam of an antenna

array and to reject strong interference in the near field or

in a minor lobe of the array. Assume that the signal and

interference power spectra are overlapping and that the

interference power density is twenty times greater than the

signal power density at the individual array elements. Then

the signal-to-noise ratio at the reference input Pref is

1/20. Assume also that because of array gain the signal power

equals the interference power at the array output which forms

the primary input to the adaptive system. The signal-to-noise

ratio at the primary input is ppri = 1. After convergence

the signal-to-noise ratio at the system output will be

out 1/Pref = i - 20

If signal distortion is defined as
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D(z) = ref (z) (2.42)
Ppri

then the maximum signal distortion will be

D(z) = (1/20)/l = 5 percent

The adaptive cancelling improves the signal-to-noise

ratio twentyfold while introducing only 5 percent distortion.

Additionally, the adaptive filter will provide the same per-

formance when the input conditions change and a new set of

convergent weights have been obtained.

D. NOISE CANCELLING APPLICATIONS

This section describes several practical applications

which demonstrate the applied concepts of adaptive noise

cancelling. These applications include cancellation of noise

in speech signals, cancellation of antenna sidelobe inter-

ference, cancellation of 60-Hz interference and cancellation

of either periodic or broadband interference when no reference

is available.

A prime example of noise contaminated speech is that of a

pilot communicating by radio from the cockpit of an aircraft

where a high level of engine noise is interfering with the

pilot's voice. The noise contains, among other components,

strong periodic mixtures that occupy the same frequency band

as speech. These components cannot be "low filtered" or

"high filtered" out of the speech pattern and are picked up by
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the microphone into which the pilot speaks, severely inter-

fering with the intelligibility of the radio transmission.

It is impractical to process the transmission with a conven-

tional fixed filter because the frequency and intensity of

the noise components vary with engine speed and load and even

the position of the pilot's microphone. By placing a second

microphone at a suitable location in the cockpit, a sample

of the ambient noise which is free of the pilots speech can

be obtained. This sample can be filtered and subtracted from

the transmission, significantly reducing the interference.

Widrow et al., [Ref. 4] demonstrated the feasibility of

cancelling noise in speech signals by conducting a number of

experiments which simulated the cockpit noise problem. Figure

2.5 shows the system used for cancelling the noise in the

cockpit noise simulations. A voice input from a room with

strong acoustic interference was used as the primary input.

A second microphone was placed in the room away from the

speaker and this was used as the reference input. The output

of the noise cancelling was then monitored by a remote listener.

The canceller included an adaptive filter with 16 weights

whose values were digitally controlled by a computer. A

typical experiment used an audio frequency triangular wave

containing many harmonics as interference. Because of multi-

path effects the amplitude and phase of the interference

varied from point to point in the room. The noise cancelling

system was able to reduce the output power of the interference,

which otherwise made the speech unintelligible, by 20 to 25
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dB, rendering the interference barely perceptible to the

remote listener. No noticeable distortion was introduced

into the speech pattern. Convergence times were on the order

of a few seconds and the system was readily able to readapt

when the position of one or both microphones was changed or

when the frequency of the interference was varied over the

range of 100 to 2000 Hz.

E. CANCELLING ANTENNA SIDELOBE INTERFERENCE

Another type of noise cancelling is that of eliminating

strong unwanted signals which are incident on the sidelobes

of an antenna array. These interferences can severely retard

the reception of weaker signals on the main beam. The

conventional method of reducing this type of interference by

adaptive beamforming is often complex and expensive to imple-

ment. When the number of spatially discrete interference

sources is small, adaptive noise cancelling can provide a

simpler and less expensive method of coping with this problem.

Consider an array pattern with signal strengths and directions

as shown in Figure 2.6. The array consists of a circular

pattern of 16 equally spaced omnidirectional elements. The

outputs of the elements are delayed and summed to form a main

beam steered at a relative angle of 0 degrees. A simulated

"white" signal consisting of uncorrelated samples of unit

power is assumed to be incident on the beam. Simulated inter-

ference with the same bandwidth and with a power of 100 is

incident on the main beam at a realtive angle of 58 degrees.
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The entire array is then connected to the adaptive noise

cancelling system shown in Figure 2.7. In this case the

output of the beamformer serves as the canceller's primary

input, and the output of one of the elements (#4) is arbi-

trarily chosen as the reference input. The adaptive can-

celler uses 14 weights.

A number of experiments performed in (Ref. 41 show that

the signal-to-noise ratio at the system output was found

after convergence to be +20 dB. The signal-to-noise ratio

at the single array element was -20 dB. This result bears out

the equation shown in the Wiener solution (2.35), that the

signal-to-noise ratio at the system output would be the

reciprocal of the ratio at the reference input, which is

derived from a single element.

F. CANCELLING 60-HZ INTERFERENCE IN ELECTROCARDIOGRAPHY

A practical example of cancelling 60-Hz interference is

found in electrocardiography. A major problem which exists

in the recording of electrocardiograms (ECG's) is the ap-

pearance of unwanted 60-Hz interference in the output. Vari-

ous methods have been utilized to help cancel the 60-Hz

interference, including more effective grounding techniques

and the use of twisted cabling. Another method capable of

reducing 60-Hz ECG interference is adaptive noise cancelling

via a system such as that shown in Figure 2.8.

The primary input is taken from the ECG preamplifier and

the 60-Hz reference is taken from a wall outlet. The adaptive
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filter is simple, containing only two variable weights, one

applied to the reference input directly and the other to a

version of it shifted in phase by 90 degrees. The two

weighted versions of the reference are summed to form the

filter's output, which is then subtracted from the primary

input. A valuable advantage in the use of an adaptive filter

rather than a fixed notch filter at 60-Hz, is that the varia-

ble weights allow the 60-Hz interference to change in both

magnitude and phase and still realize effective cancellation.

G. CANCELLING PERIODIC INTERFERENCE WITH NO EXTERNAL

REFERENCE

In many cases where a broadband signal is corrupted by

periodic interference there is no external reference input

which is free of the signal. If a fixed delay is inserted

in a reference input drawn directly from the primary input,

as shown in Figure 2.9, the periodic interference can, in

many cases, be cancelled. A key point is that the delay must

be chosen to be of sufficient length to cause the broadband

signal components in the reference input to become decorre-

lated from those in the primary input. Because of their

periodic nature, the interference components will remain

correlated with each other.

By taking the output from the LMS output instead of the

difference signal the same system can be used to separate

broadband interference from a periodic signal as shown in

Figure 2.10. Such a filter is often called an adaptive
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self-tuning filter. Additionally, applications of this filter

are utilized in the adaptive line enhancer, a system used for

detection of a low level signal imbeded in noise. The trans-

fer function of this filter is the digital Fourier transform

of the impulse response. Its magnitude at the frequency

of the interference is very nearly one, the value required

for perfect cancellation.

H. THE ADAPTIVE NOISE CANCELLER AS A NOTCH FILTER

One of the primary considerations for considering con-

straints on adaptive filtering systems stems from the filter's

use as a notch filter. After an analysis of the adaptive

system as a notch filter it was felt that specific constraints

could be used to

a) shape the frequency characteristics

b) produce a faster convergence.

Before considering the constraining equations and their

results it is first helpful to analyze the adaptive noise

canceller in its notch filter mode. Figure 2.11 depicts a

single frequency adaptive noise canceller with two adaptive

weights. Analytical and experiemntal results show that if

more than one frequency is present in the reference input

then a notch for each will be formed. The primary input is

assumed to be any type of signal--stochastic, deterministic,

periodic, transient, or any combination of these. The

reference input is assumed to be a pure cosine wave

C cos(W 0 t +0). The primary and reference inputs are sampled
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at the frequency of w= 2(Pi)/T rad/sec. The reference5

input is sampled directly yielding Xl(j), and after under-

going a 90 degree phase shift, also produces X2(j). Assume

synchronous sampling.

A transfer function for the noise canceller of Figure 2.8-1

can be obtained by analyzing signal propagation from the

primary input to the system output.

The weights are updated in accordance with the LMS

algorithm yielding

W1(j+l) = Wl(j) + 2u1E(j)Xl(j)

(2.43)

W2(j+l) = W2(j) + 2pe(j)X2(j)

The sampled reference inputs are

Xl(j) = C cos(W0 (j)T + %)

(2.44)

X2(j) = C sin(w 0 (j)T + 4)

Using signal flow diagram techniques and considering that the

error signal at time j = k is

e(j) = 6(j-k) (2.45)

the filter's impulse response at k = 0 can be given as

y(j) = 21C 2 u(j-l)cos(w 0 (j)T) (2.46)
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where u(j) is the discrete unit step function. The transfer

function of this path is

G(z) = 2C2 z(z -cosw 0T)

2 _2zcoswoT +2 -

2C 2 (z cos W0T - )(2.47)

z - 2z cos w0T + 1

This transfer function can be expressed in terms of the

radian sampling frequency w. = 2(Pi)/T as

2 S-1
G(z) 2 PC [zcos(2rw0  ) - (2.48)

z2 -2z cos (2rw0 W)- + 1

When the feedback loop from the adaptive filter output to

the difference signal is formed, the transfer function H(z)

from primary input to noise canceller output can be written

as

2 -1z -2z cos (21w 0W- ) + 1
H z -2(1 -uC 2 )z cos (21rwWs1 ) +1 -2C 2  (

This transfer function has the property of a notch filter at

the reference frequency w0. The zeros of the transfer func-

tion are located in the z-plane at

z= exp(±j21w W ) (2.50)

-1
and are exactly on the unit circle at angles of ±2 Tws

radians. The poles are inside the unit circle at a radial
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distance (1-2iiC2 )1/ 2 from the origin. For slow adaptation

(small values of C 2 ) the angles of the poles are almost

identical to the zeros. Since the zeros lie on the unit

circle, the depth of the notch in the transfer function is

infinite at frequency w = w0" The sharpness of the notch is

determined by the closeness of the poles to the zeros. Corres-

ponding poles and zeros are separated by a distance approxi-

mately equal to C 2 . The notch bandwidth is given by

BW = 2Ws/ (2.51)

and the Q of the notch is determined by the ratio of the

center frequency to the bandwidth.

Q 0 (2.52)
C2 s

The single frequency noise canceller is, therefore, equiva-

lent to a stable notch filter when the reference is a pure

cosine wave. The depth of the null is generally superior

to that of a fixed digital or analog filter because the

adaptive process maintains the null exactly at the reference

frequency.
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III. THE CONSTRAINED ADAPTIVE FIR FILTER

In this chapter the concept of the constrained adaptive

filter is introduced. A literature search has indicated that

very little research has been done in the area of constrained

adaptive filters. Frost [Ref. 8] presents a constrained LMS

algorithm which is capable of adjusting an array of sensors

in real time to respond to a signal coming from a desired

direction while discriminating against noises coming from

other directions. A set of linear constraints on the weights

maintains a chosen frequency characteristic for the array in

the direction of interest.

In this chapter three constraint conditions are presented.

The first two involve a constraint on the angle between zero

locations, so that this angle remains constant while the zero

location changes adaptively. The constraint essentially

maintains the pattern of the zeros while their location is

shifted. The first approach is a direct implementation in

which one of the weights is changed adaptively using the LMS

algorithm and the others are slaved by the fixed angle formula

to the adaptively adjusted weight. The second implementation

involves a cascaded version of the foregoing master-slave

concept. The third constraint considered is a linear con-

straint on the weights. The approach presented uses a La-

grangian multiplier formulation to augment the cost function

in which the basic LMS adaptive algorithm is applied.
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A. FIXED ANGLE CONSTRAINT--DIRECT IMPLEMENTATION

Consider a transversal filter using the LMS algorithm

with the constraint that the angular separation between the

filter zeros in the z-plane is to be a constant as set by

design requirements. As an example, consider a fourth order

FIR filter with B = 62 - elf where 6. and 62 are the angles

of the zeros. The value of B and the magnitude of the zeros

is to be kept constant while the angles al and 62 are to be

adjusted adaptively. This specification serves to maintain

the shape of the filter characteristics in the frequency

domain. From the direct implementation of the transversal

filter shown in Figure 3.1 the system transfer function is

given by

H(z-I) = 1 + Wlz-I + W2z-2 + W3z-3 + W4Z- 4  (3.1)

= (z - 4 (z4 + W1 Z3 + W2z 2 + W3z + W4) (3.2)

which can be factored into the form

2 2 2_ cse 2
HNb(z (z -2r cose z +r (z -2r 2 Cos2z +r

H(z(z) 1
D ~z4

(3.3)

where rI and r2 represent the radius of the zero placement

in the z-plane and al and 82 are their respective angular

displacement from the axis. Carrying out the indicated

multiplication of the numerator of (3.3) yields
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N(z) = z4-(2rlcose+2r2cose )z
3 + (r 2+4r r2cosaIcose 2+r2 )z

2

(2  2 2 2 (4
- (2r r2cose2 +2r r Cosal)z + rr 2  3.4)1 2 2 2 1co1 2

Setting these terms equal to the weight values of (3.2)

yields

w = 1 (3.5)

W = -2(r cos 1 + r 2 cose 2 ) (3.6)

W = (r 2 +4rlr2 cose Cos 2 +r2) (3.7)

W = (-2r 1r2)(r 1 cosa 2 +r 2 cos e) (3.8)

2 2 (3.9)
4  1 r2

The adaptive LMS algorithm must now be constrained so that

the angle B is given by

B = e1 - a2  (3.10)

For simplicity let

r = r 2  = R (3.11)

From (3.10) it follows that

e1 (k+l) = B + 02 (k+l) (3.12)

Using (3.11) and (3.12) Equation (3.6) can now be written as
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W1 (k+l) = -2R(cos(B +6 2 (k+1)) + cos(e2 (k+l)) (3.13)

Using the trigonometric identity

cos(A+B) = cos A cos B - sin Asin B

Equation (3.13) can be written as

W1 (k+l) = -2R(cos Bcos( 2 (k+l)) -sin Bsin(62 (k+l))

+ cos(6 2 (k+l)) (3.14)

Combining terms, and defining the constants

K3 = -2R(cos(B) + 1) (3.15)

K4 = -2R(sin(B)) (3.16)

Equation (3.13) can finally be written as

Wl(k+l) = K3 cos (62 (k+i)) - K4 sin (e2 (k+l)) (3.17)

This transcendental equation can be solved iteratively for

82 (k+1) using the value for W1 (k+l) obtained from the LMS

algorithm

W1 (k+l) = W 1 (k) + 2wX(k-l)e:(k) (3.18)

Now that e2 (k+1) is known, Equation (3.7) can be solved for

W2 (k+l) , where
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2
W2 (k+l) = 2R + 4R 2 cos (e 2 (k+l) +B) cos (e 2 (k+l)) (3.19)

Recognizing that Equation (3.8) is proportional to Equation

(3.6), the fourth algorithm iteration can be written as

W3 (k+l) = R2WI (k+l) (3.20)

From (3.9) W4 is a constant value

W4 (k+l) = 4  (3.21)

The four equations (3.18) through (3.21) comprise an

adaptive iterative algorithm that produces the direct analyti-

cal realization of Figure 3.1. It is seen that W1 is changed

adaptively and W2 and W3 are slaved to W1 , and W0 and W4 are

constants. This approach yields two pairs of zeros which are

located at radius R from the origin of the z plane and precisely

B degrees apart. Figure 3.2 depicts the resulting z-plane

diagram.

B. FIXED ANGLE CONSTRAINT--CASCADED IMPLEMENTATION

A cascaded implementation of the fourth order transversal

filter is shown in Figure 3.3. The transfer functions result-

ing from Figure 3.3 are given by

z2 - 2r1 cos elz + r
2

Hl(z) = 2 (3.22)
z

for the first section, and for the second section
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I

Fig. 3.2. Z-Plane Diagram of Zeros Resulting from
Transversal Filter
IV indicates four poles located at the
Origin
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LMSdek )

Fig. 3.3. Cascaded Transversal Filter with LMS

Adaptation of WI. Master-Slave Concept
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z - 2r 2 cose z +r2

H 2(z) = 2 2 (3.23)
z

The weight values from these two equations are

SW1 = -2 r cos1

2W2 = r1
2 1

W 3 = -2 r2 cos e2

W r=
4 2

Once again the algorithm producing a set of converging

weights begins with the LMS adaptive equation

W ( k + l ) = WI(k) + 2PX(k-l) e(k) (3.24)

The second weight is a constant proportional to

W 2 (k+l) = R2  (3.25)

From (3.22) the value for W can be written as

W (k+l) = - 2r 1 cos e1(k+l) (3.26)

Solving for e1 (k+l)

-W(3 (k+l)
cose1 (k+l) - 2r1  (3.27)

where the value of Wl(k+l) is known from (3.24) and
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rI = r2 = R

Therefore,

-Wl(k+l)
el(k+l) = Arccosine( 2R (3.28)

Now the third weight can be written in the form of

W3(k+l) = -2 Rcose2 (k+l) (3.29)

where

e2 (k+l) = B - (k+l) (3.30)

with B a given constant set by the user and e (k+l) known

from (3.27). The fourth weight is proportional to

W4 (k+l) = R2  (3.31)

The four equations (3.24), (3.25) and (3.29), and (3.31)

comprise an adaptive iterative algorithm that produces the

cascaded realization of Figure 3.3. As in the direct reali-

zation, the solution of Equations (3.22) and (3.23) using the

adaptive weight solutions produces two pairs of zeros which

are located at radius r1 = r2 = R from the origin of the

z-plane and precisely B degrees apart.

C. LINEARLY CONSTRAINED WEIGHTS--LAGRANGE MULTIPLIER APPROACH

Consider now the LMS adaptive equations modified for a

different type of constraint, namely a linear constraint on
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the sum of the weight vector. That is, the constraint that

W1(k) + W 2 (k) + ... + Wn(k) = K (3.22)

where K is some user defined constant. This constraint func-

tion is adjoined to the square of the error equation by the

method of Lagrange multipliers [Ref. 91. Recalling from

Equation (1.5) that

e(k) d(k) - W(k)T X(k)

the adjoined and modified least mean squared error function

can be written as the cost function equation

J(k) [d(k)-W(k)T X(k)] - X(k) [W(k)Tu-K] (3.33)

where

u 1T

and x(k) is the scalar Lagrange multiplier.

In order to minimize the mean squared error under the

given constraint consider the gradient of (3.33) with respect

to the weights and to the Lagrangian multipliers.

V[J(k)lw = -2[d(k)-W T(k)X(k)]X(k) - X(k)u (3.34)

and

70



V(J(k)] = -[W(k)Tu - K] (3.35)

The method of steepest descent can be described by the two

relationships

W(k+l) = W(k) + klV[J(k)]w (3.36)

and

x(k+l) = x(k) + k2 V[J(k)] X  (3.37)

Substituing Equations (3.34) and (3.35) into Equations (3.36)

and (3.37) yields the final weight and Lagrange parameter

iteration algorithms using the LMS approximation

W(k+l) = W(k) - 2kIe(k)X(k) - X(k)u (3.38)

and

A(k+l) = A(k) - k2 W(k)Tu- K] (3.39)

where

W(k) = the weight vector before adjustment

W(k+l) = the weight vector after adjustment

K = the linear constraint value

klrk 2 = the scalar constants (kj,k 2 < 0)
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X (k) the Lagrange parameter before adjustment

x(k+l) the Lagrange parameter after adjustment.

The resulting constrained adaptive filter is shown in Figure

3.4. Experimental results are presented in the next chapter.

72



z z 
Z 4 - -------

X(k) k ,

X (k) k

MOIFIED -: ) d (k )
BIk (k]

4

(k-1)

SLAGRANGE_
ADAPTION k
PROCESS

Fig. 3.4. The Adaptive LMS Filter with Linear Constraint
and Lagrange Parameters

73



IV. SIMULATIONS AND RESULTS

Using the Hewlett-Packard 85 (HP-85) microcomputer

several computer simulations are performed to demonstrate

both the unconstrained and the constrained LMS adaptive

systems discussed in Chapters II and III. The unconstrained

adaptive system utilized for computer simulation is the

system depicted in Figure 2.1. The unconstrained results

are obtained first with nine adaptive weights and then with

only four adaptive weights. The noise input consists of

either the sum of two sinewaves or zero mean white noise

added to a sinewave. In all unconstrained cases the

reference input (the desired waveform) is a sinewave. The

constrained adaptive systems are simulated for the linear

constraint using the LagLangian multiplier and for the

angular constraint (separation of zeros in the z-plane

plot) in both cascaded and direct implementations.

A. THE UNCONSTRAINED ADAPTIVE NOISE CANCELLER

The adaptive noise canceller shown in Figure 2.1 is

computer simulated using nine weights, each adapted by the

LMS algorithm. The desired signal is a 10 Hz sinewave

sampled at f = 128 Hz. The noise input is the sum of two

equal sinewaves with frequency f = 10 Hz and frequency

f = 35 Hz. The number of samples is N = 128 and the

adaptation constant is v = K = 0.1. The system output
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converges after a short learning period to the desired

signal. Figures 4.1 through 4.3 depict these results.

A sample of three of the nine weights (w0, w4, w8 ) is

shown in Figures 4.4 through 4.6 to illustrate the steady

state solution of the adaptive weights. After just N = 24

all weights have settled to within 0.1% of their final

value. Figure 4.7 is the system error. It should be noted

that a faster sampling frequency of f = 256 reduces this

error even further.

The next simulation is similar to the first with the

exception that this system uses only four weights instead

of the nine weights used previously. Again the noise input

is the sum of two equal sinewaves (f = 4 Hz, f = 20 Hz) and

the reference or desired waveform is a sinewave at f = 4 Hz.

The adaptation constant is Kl = 0.1, N = 128 and the

sampling frequency for the inputs is f = 128 Hz. Figures 4.8

and 4.9 show the filter input and the reference signal. It

is evident from the system output shown in Figure 4.10 that

this system does not track as well as the previous system

with nine weights. Plotting weight #1 of the system through

time, as shown in Figure 4.11, illustrates the oscillatory

nature of the weight values.

The same unconstrained simulation is repeated with the

noise input taken as zero mean uncorrelated noise (generated

by the HP-85 random number generator) summed with a sinewave

of frequency f = 10 Hz. Figure 4.12 shows the noise input.
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INPUT SIGNAL

.5

Nal2S SAMPLES

Fig. 4.1. System Input - Nine Adaptive Non-
Constrained Weights
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DESIRED SIGNAL

r

Fig. 4.2. System Reference Signal
Sampling Frequency Fs = 128 Hz
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FILTER OUTPUT
DESIRED=1ST SI ElJAIE

'- I PUT=2 J :I2O IDS

I1 !'/'~~I4' 1!" Ii t /

Fig. 4.3. System Output - Nine Adaptive Weights
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INPUT=2 SINUSOIDS

DESIRED=1ST SIHEWAVE

N=128 SAMPLES

1(1= 1 WEIGHT#O

INIT VALUES OF W=.05

Fig. 4.4. Weight #0 Plotted Through N =128 Samples
Nine Adaptive Weights

79



INPUT=2 SINUSOIDS
DESIRED=1ST SINEWAVE

.5

N=128 SAMPLES

Kla.1 WEIGHT#4

INIT VALUES OF W=.05

Fig. 4.5. Weight #4 Plotted Through N =128 Samples
Nine Adaptive Weights

80



\-

INPUT=2 SINUSOIDS

OESIRED=lST SINEWAVE

Nf128 SAMPLES

K1U.1 WEIGHT#8

INIT VALUES OF W=.05

Fig. 4.6. Weight #8 Plotted Through N = 128 Samples
Nine Adaptive Weights
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INPUT=2 SINUSOIDS
OESIREDhIST SINEWAVE

K1=. 1

E
I

N=128 SAMPLES

ERROR
INIT VALUES OF W=.05

Fig. 4.7. System Error - Nine Adaptive Weights
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FILTER INPUT

1

IT.

'N n12 iSAMPL s

Fig. 4.8. System Noise Input - Four Adaptive Weights
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DESIRED SIGNAL

Fig. 4.9. System Reference
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UR

FILTER OUTPUT T=1/1 2 8

N.128 SAMPLES

Fig. 4.10. System Output -Four Adaptive Weights
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INPUT-SINE1 + SIHE2

OESIREDSINE1

H=128 SAMPLES

WEIGHT #1

Fig. 4.11. Weight #1 Plotted Through N = 128 Samples
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INPUT SIGNAL

N=128 SAMPLES~

Fig. 4.12. System Input -SIN =1.64 dB
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The desired signal is the sinewave shown in Figure 4.13.

Nine adaptive weights are utilized. The system sampling

frequency is f = 256 Hz and the adaptation constant is

Ki = 0.1. The signal-to-noise ratio of the input signal

is 1.64 dB. Figure 4.14 shows the system output while

Figure 4.15 illustrates the system error. Figure 4.16 shows

one of the system weights plotted though time.

B. CONSTRAINED ADAPTIVE SYSTEM SIMULATIONS

The simulation of the angularly constrained adaptive

systems shown in Figures 3.1 and 3.3 produces nearly identical

results. Computationally, the iterative solution required

for the direct implementation is much slower than that of

the cascaded system. Since both system outputs are virtually

identical, those of the faster cascaded system are shown.

All of the linearly constrained adaptive results utilize

nine adaptive weights and all of the angularly constrained

systems utilize four weights.

Using the cascaded adaptive system shown in Figure 3.3

simulation results are obtained for a noise input shown in

Figure 4.17 of two sinewaves of frequencies f = 4 Hz and

f = 20 Hz. The sampling frequency f = 128 Hz. The

desired signal shown in Figure 4.18 is a sinewave of

frequency f = 4 Hz. The adaptation constant is Kl = 0.1.

The zeros are desired at a radius of 1 and with a separation

of 12 degrees. The system output tracks the desired signal

88



DESIRED FILTER OUT

Fig. 4.13. System Reference Signal
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INPUT=SIN+NOISE
K1 I

Fig. 4.14. System Output -Four Adaptive Weights
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I NPUT =S IN +NO ISE
DESIRED SIG=SINUSOID

K

ERROR

tINIT VALUES OF W=.05

Fig. 4.15. system Error - Four Adaptive Weights
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I NPUT =SIN +NO0I SE

DESIRED SI'G=SINUSOID

N=129 SAMPLES

Kin.1WE IGHT* 1

INIT VALUES OF W=.05

Fig. 4.16. Weight #1 Plotted Through. N =128 Samples
Four Adaptive Weights
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FILTER INPUT

N=128 SAMPLES

Fig. 4.17. System Input - Sum of Two Sinewaves
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DESIRED FILTER OUT

N-128 SAMP E:?q

Fig. 4.18. Reference Input

94
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as shown in Figure 4.19 and places the system zeros with

the exact requested degree of separation as shown in

Figure 4.20. Zero 1 is at radius 1 and an angle of 63.39

degrees. Zero 2 is at a radius of 1 and an angle of 51.39

degrees. The other two zeros are the conjugate pairs of

the first two.

The adapted weight number 1 is plotted through time in

Figure 4.21. The same oscillating pattern is shown here as

is depicted in Figure 4.11. It is felt that, as in the case

of Figure 4.11, using a greater number of weights would

eliminate the noisy weight pattern and accordingly produce

a cleaner output.

Suppose now that the user wishes to drastically alter

the frequency characteristics. The input to the system

remains the same (as shown in Figure 4.17) however now the

desired angle cf separation of the zeros is 130 degrees

instead of the original 12 degrees. System output is shown

in Figure 4.22, the reference signal is shown in Figure 4.23,

and the z-plane zero location is shown in Figure 4.24.

Zero number 1 is at a radius of 1 and at an angle of 158.55

degrees and zero number 2 is at a radius of 1 and an angle

of 28.55 degrees, providing the prescribed 130 degrees of

separation. The remaining two zeros form the conjugate pair.

The sampling frequency is changed to f = 256 Hz and the

adaptation constant K1 is changed to 0.05.
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FILTER OUTPUT T=1/128

--CASCADED SECTIONS

Fig. 4.19. System Output - Four Adaptive Weights
Desired Zero Separation = 12 Degrees
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ZERO LOCATION

I~~~~ liiII ii I Ii

RADIUS-I

DESIRED ANGLE LEP=12

Fig. 4.20. Z-Plane Zero Location -Four Adaptive
Weights
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INPUT=SINE1 + SINE2
DESIRED=IST SINUSOID

1

N=128 SAMPLES

K1I I WEIGHT #1

Fig. 4.21. Weight #1 Plotted Through N = 128 Samples
Four Adaptive Weights
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FILTER OUTPUT Tat/256

Fig. 4.22. Filter Output -Four Adaptive Weights
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DESIRED FILTER OUT

Fig. 4.23. Reference Signal
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MW Ire

ZERO LOCATION
K 1 .05

RAO IUSa 1

OESIRED ANGLE SEP,130

Fig. 4.24. Z-Plane Zero Location
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The same simulations are performed for two sinusoids of

frequencies f = 10 Hz and f = 35 Hz. A sampling frequency

of f = 256 Hz is used with an adaptation constant Kl = 0.1.

Figures 4.25 through 4.28 depict the system input (the sum

of the two sinusoids), the filter output, the desired signal,

and the z-plane zero locations for a desired separation of

20 degrees. Zero 1 is located at a radius of 1 and an angle

of 50.2 degrees. Zero 2 is located at a radius of 1 and an

angle of 70.2 degrees. The remaining two zeros are the

conjugate pairs. Figures 4.29 and 4.30 show the system out-

put and z-plane zero location for the same system input and

same reference but with a desired zero separation of 40

degrees. Zero 1 is located at a radius of 1 and an angle

of 45.43 degrees and zero 2 is located at a radius of 1 and

an angle of 85.43 degrees. The remaining two zeros are

conjugate pairs.

C. LINEARLY CONSTRAINED ADAPTIVE FILTER SIMULATIONS

USING THE LAGRANGE MULTIPLIER TECHNIQUE

The linearly constrained LMS adaptive filter shown in

Figure 3.4 is simulated for various values of K, the linear

constraint value. Two types of system inputs are used--

random "white" noise and a sinusoidal signal of frequency

4 Hz. In each case the desired signal is a damped exponen-

tial with a final value of 0.2.

Figure 4.31 depicts the filter output superimposed upon

the desired output of a damped exponential of final value
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FILTER INPUT

.5

Fig. 4.25.- System Input -Four Adaptive Weights
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FILTER OUTPUT T=1/2516

CASCADED :SECTIONS

.5

N 128 S,?IMPL -s1

Fig. 4.26. System output - Four Adaptive Weights

Desired Zero Separation =20 Degrees
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DESIRED FILTER OUT

Fig. 4.27. Reference Signal
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ZERO LOCATION

: : : l... . Ii I

RRDIUS=I

DESIRED ANGLE EPn20

Fig. 4.28. Z-Plane Zero Locations - Four Adaptive
Weights
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FILTER OUTPUT T=1/256

CASCAO D SECTIONS

E

"5 '

Fig. 4.29., System Output - Four Adaptive Weights
Desired Zero Separation = 40 Degrees
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ZERO LOCATION

RAD~~ I S

DESIRED ANGLE-,3 Pw40

Fig. 4.30. z-Plane Zero Location
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FILTER OUTPUT:CONSTRPfJNED

Occ DESIRED SIG=DAMPED EXP

N=64 SAMPLES
INPUT=S INUSO ID

Fig. 4.31. system output and Desired Signal
Linear Constraint K =0

109



0.2. The linear constraint K is arbitrarily chosen to be

zero. The adaptation constant is Kl = 1 E-6. The system

error is shown in Figure 4.32. The sum of the weights plotted

through time is shown in Figure 4.33. The final value of

the Lagrange multiplier, that is X(N) at time N = 64, is

found to be -1.022 E-4. The final value of the sum of

weights is found to be 0.059 compared with a requested value

of zero.

The same system is again simulated for a linear con-

straint of K = -0.2. Figure 4.34 shows that the sinusoidal

input converges to the desired damped exponential of final

value 0.2. Interestingly, the response converges and then

begins to build an oscillation. This type of response in

adaptive systems has been observed elsewhere and may be due

to an arithmetic precision problem [Ref. 103. Figure 4.35

shows the system error and Figure 4.36 shows the sum of

weights graph plotted through time. The final value of the

sum of weights is found to be -0.2427 compared with the

desired value of -0.2.

The simulation is again performed, now with a "white"

noise input and the same damped exponential with final value

of 0.2 as the desired signal. In the first of the three

noise input simulations the sum of weights constraint K is

set to -0.1; the second simulation has K = 0.2; the final

simulation uses K = 0.5. Figures 4.37 through 4.42 depict

the simulation results. In Figure 4.42 the sum of the
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I NPUT=S I NUSO I 0
DESIRED SIGwDAMPED EXP

ERROR

Fig. 4.32. System Error y(n)
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INPUT=SINUSOID

DESIRED SIG=DAMPED EXP

I

N=64 SAMPLES

SUM OF WEIGHTS

Fig. 4.33. Sum of Weights Plotted Through N = 128
Samples. Constraint K = 0
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FILTER OUTPUT:CONSTRAINED

INIT VALUES OF W=.01

OESIRED SIG=DAMPED EXP

.5

N=128 SAMPLES

INPUTSINUSOID

Fig. 4.34. System Output and Desired Signal
K =-.2
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INPUT=SINUSOID
DESIRED SIGuOAMPE0 EXP

K1=,QOe01

N=128 SAMPLES

ERROR

Fig. 4.35. System Error
Linear Constraint K = -.2
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I NPUTwS IN US$01D

DESIRED SIG=OAMPED EXP

V

N 12 8 OKIt

SUM OF WEIGHTS

Fig. 4.36. Stun of Weights Plotted Through N =128
Samples. Linear Constraint K =-.2
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FILTER OUTPUT:CONSTRAINED

INIT VALUES OF W=.01

DESIRED SIG=DAMPED EXP

1

.5

N=64 SAMPLES

INPUT=RANDOM NOISE

Fig. 4.37. System Output Superimposed over
Desired Signal of Damped Exponential
K = -.1. Nine Adaptive Weights
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INPUT=RANDOM NOISE
DESIRED SIG=OAMPED EXP

1

N 6 4 rAfFrr

SUM OF WEIGHTS

Fig. 4.38. Sum of Weights Plotted Through N = 64
Samples. Constraint K = -0.1
Nine Adaptive Weights
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FILTER OUTPUT:CONSTRRINED

INIT VALUES OF W=.01

DESIRED SIG=DAMPED EXP

N=I28 SAMPLES

INPUT=RRNDOM NOISE

Fig. 4.39. System Output Superimposcd over Desired
Signal of Damped Exponential K = +0.2
Nine Adaptive Weights
K1 = .00001 K2 .00008
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INPUT=RANDOM NOISE
OESIRED SIG=DAMPED EXP

I

N=128 SAMPLES

SUM OF WEIGHTS

Fig. 4.40. Sum of Weights Plotted for N = 128 Samples
Nine Adaptive Weights. K = .2
K1 = .00001 K2 = .00008
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FILTER OUTPUT:CONSTRAINED

INIT'VALUES OF W=.01

DESIRED SIG=DAMPED EXP

N=128 SAMPLES

INPUT=RANDOM NOISE

Fig. 4.41. System Output Superimposed over the
Desired Signal of a Damped Exponential
K =.5
K= .00001 K2 = .00009
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INPUT=RANDOM NOISE
DESIRED SIG=DAMPED EXP

N=128 SAMPLES

SUM OF WEIGHTS

Fig. 4.42. Sum of Weights Plotted Through N = 128
Samples. K = .5
K1 = .00001 K2 = .00009
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weights overshoots the constraint of K = 0.5 but returns

to within 10% of that value at N = 128.

D. CONCLUSIONS

This thesis has investigated adaptive noise cancellation

techniques in detail with the objective of implementing

constrained adaptive filters. Two basic types of constrained

adaptive filters are presented--the fixed angular separation

(direct and cascaded implementations) and the adaptive

Lagrangian multiplier linear constraint approach. All three

methods produce the desired output within a very close

tolerance for the examples tested. As expected, the direct

implementation takes longer to converge than the cascade

approach. The results are promising, however, several key

questions remain to be investigated. In particular the

convergence properties of these constrained adaptive

algorithms need to be studied in detail. In the case of

the Lagrangian multiplier approach, if there is an optimal

steady-state solution, the modified LMS algorithm should

find a minimum since it is a simplified gradient technique.

However the LMS minimum may not be global. For the case of

the angular constraint process, the stability of the

adaptive algorithm and its convergence also need to be

examined, although the master-slave would seem to contain

inherent stability.
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Finally, the concepts of constrained adaptive algorithms

need to be examined with more sophisticated examples using

a larger number of weights.
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